College Algebra Placement Test
January 23, 2013

Last Name, First Name
Identification Number

- Calculators, books and notes are not allowed.
- The processing time for the test is 120 minutes.
- Circle the best answer.
- Do not write in the boxes.
- Do not write in pencil.

<table>
<thead>
<tr>
<th>Category</th>
<th>Minimum</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part B: Equations and Inequalities</td>
<td>60%=15 p.</td>
<td></td>
</tr>
<tr>
<td>Part C: Functions and Their Graphs</td>
<td>60%=15 p.</td>
<td></td>
</tr>
<tr>
<td>Part D: Word Problems</td>
<td>50%=10 p.</td>
<td></td>
</tr>
<tr>
<td>Total Points</td>
<td>60%=60 p.</td>
<td></td>
</tr>
</tbody>
</table>
Part A: Basic Arithmetics

1. \(2(3 - 4) - 4(1 + 3) \) is equal to:
 \(\begin{align*}
 & (a) 16 \quad (b) -18 \quad (c) 18 \quad (d) 10 \\
 & \end{align*} \)

2. \((x - 2)^2 - 2x^2 - 4 \) is equal to:
 \(\begin{align*}
 & (a) -x^2 + 2 \quad (b) x(x + 4) \quad (c) -x(x - 4) \quad (d) -x(x + 4) \\
 & \end{align*} \)

3. \(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} \) equals:
 \(\begin{align*}
 & (a) \frac{5}{12} \quad (b) \frac{1}{4} \quad (c) \frac{3}{12} \quad (d) -\frac{1}{12} \\
 & \end{align*} \)

4. \(\frac{x - y}{x+y} + \frac{x-y}{x+y} \) is equal to:
 \(\begin{align*}
 & (a) \frac{-y}{x^2+y^2} \quad (b) \frac{x^2+y^2}{x^2-y^2} \quad (c) \frac{x}{x+y} \quad (d) \frac{2x^2-xy+y^2}{x^2-y^2} \\
 & \end{align*} \)

5. \(\frac{2}{3} \div \frac{10}{12} \) is equal to:
 \(\begin{align*}
 & (a) \frac{5}{9} \quad (b) \frac{20}{36} \quad (c) \frac{4}{5} \quad (d) \frac{5}{4} \\
 & \end{align*} \)

6. \(\frac{4x-8}{x-2} \cdot \frac{x+2}{2x-4} \) is equal to:
 \(\begin{align*}
 & (a) \frac{2x+4}{x-2} \quad (b) \frac{2x-4}{x-2} \quad (c) \frac{4}{x-2} \quad (d) \frac{1}{x-2} \\
 & \end{align*} \)

7. \(2^3 \cdot 16 \cdot 2^{-6} \) equals:
 \(\begin{align*}
 & (a) 16 \cdot 10^{-18} \quad (b) 89746 \quad (c) 2 \quad (d) 16 \\
 & \end{align*} \)

8. \((x^{-2} y^{\frac{1}{3}} z^{-1})^3 \) is equal to:
 \(\begin{align*}
 & (a) \frac{\sqrt[3]{y}}{x^2 z^3} \quad (b) x y^{\frac{19}{6}} z^2 \quad (c) \frac{(\sqrt[3]{y})^3}{x^3 \sqrt[3]{z}} \quad (d) 3x^{-2} + 3y^{\frac{1}{6}} + 3z^{-1} \\
 & \end{align*} \)

9. \(\sqrt{a^2 b^4 c^6} \) is equal to:
 \(\begin{align*}
 & (a) \frac{1}{a^2 b^4 c^6} \quad (b) ab^2 c^3 \quad (c) ab^2 c^4 \quad (d) \frac{1}{ab^2 c^3} \\
 & \end{align*} \)

10. \(\frac{x^2 y^{1-4}}{x^5 y^{-2}} \) is equal to:
 \(\begin{align*}
 & (a) \frac{x^{-5}}{y^{2x-6}} \quad (b) \frac{x^{-1}}{y^{x-2}} \quad (c) \frac{x^5}{y^{2x}} \\
 & \end{align*} \)

11. \(5\sqrt{12} + 2\sqrt{3} - 3\sqrt{48} \) is equal to:
 \(\begin{align*}
 & (a) 2.4 \quad (b) 0 \quad (c) 4\sqrt{3} \quad (d) 24\sqrt{3} \\
 & \end{align*} \)
12. \(\frac{\sqrt{16a^{2}b^{4}}}{\sqrt{ab^{3}}} \) equals:
(a) \(4\sqrt{ab} \) (b) \(ab \) (c) \(\sqrt{a} - b \) (d) \(4\sqrt{a}b \)

13. \(27^{-\frac{3}{4}} \) is equal to:
(a) \(\frac{1}{81} \) (b) \(0.3 \) (c) \(1261 \) (d) \(-81 \)

14. \(|12 - 15| - |3 - 7| \) equals:
(a) \(7 \) (b) \(1 \) (c) \(-1 \) (d) \(-7 \)

15. \(| - 5^{3} + 7^{2} | - 4(-2) \) is equal to:
(a) \(-68 \) (b) \(84 \) (c) \(-84 \) (d) \(68 \)

16. If \(x = yz \) then
(a) \(\sqrt{x} = \sqrt{y} + \sqrt{z} \) (b) \(\frac{x^{2}}{y} = \frac{yz}{y} \) (c) \(\frac{x^{2}}{y} = \frac{xz}{y^{2}} \) (d) \(\frac{x}{y} = \frac{xyz}{y^{2}} \)

17. If \(a \leq -b \) then
(a) \(-a \leq b \) (b) \(-2(a + b) \geq 0 \) (c) \(2(a + b) \geq 0 \) (d) \(2(a - b) \geq 0 \)

18. Which of the statements is true?
(a) \(-2 \leq -5 \) (b) \(-5 < -5 \) (c) \(-5 < -2 \) (d) \(-5 > -2 \)

19. Which of the statements is true for \(x \neq 0 \)?
(a) \(|-x| = -|x| \) (b) \(|-x| > -|x| \) (c) \(|-x| < -|x| \) (d) \(|-x| \leq -|x| \)

20. \(\frac{4 \cdot 10^{5}}{5 \cdot 10^{6}} \) equals:
(a) \(0.8 \) (b) \(0.08 \) (c) \(8 \) (d) \(20 \cdot 10^{11} \)
1. The solution of $2x + 3 = 5$ is:
 (a) $x = 4$
 (b) $x = 16$
 (c) $x = 1$
 (d) no solution!

2. If $\frac{2}{3}x + 5 = -\frac{1}{4}x$, then:
 (a) $x = -\frac{60}{11}$
 (b) $x = \frac{60}{11}$
 (c) $x = 0.4$
 (d) $x = \frac{11}{60}$

3. If $|x - 1| = 5$, then:
 (a) $x = -4$
 (b) $x = 6$
 (c) $x_1 = 4, x_2 = -6$
 (d) $x_1 = -4, x_2 = 6$

4. If $-3x + 2 \leq 4$, then:
 (a) $x > -\frac{2}{3}$
 (b) $x \geq -\frac{2}{3}$
 (c) $-\frac{2}{3} \leq x \leq \frac{2}{3}$
 (d) $x \leq -\frac{2}{3}$

5. Give all $x \in \mathbb{R}$ satisfying $\frac{1}{x-2} > 3, x \neq 2$:
 (a) $2 < x < \frac{7}{3}$
 (b) $x \leq \frac{7}{3}$
 (c) $x < \frac{7}{3}$
 (d) $-\frac{7}{3} \leq x \leq \frac{7}{3}$

6. Solve the equation $x^2 - 4 = 5$:
 (a) $x_1 = -3, x_2 = 3$
 (b) $x_1 = -1, x_2 = 1$
 (c) $x = 3$
 (d) no solution!

7. The solutions of the quadratic equation $x^2 + 4x - 3 = 0$ are:
 (a) $x_1 = -1, x_2 = -3$
 (b) $x_1 = 1, x_2 = 3$
 (c) $x = 2 \pm \sqrt{7}$
 (d) $x = -2 \pm \sqrt{7}$

8. Solve the following system of linear equations:

 \[
 \begin{align*}
 2x + 3y &= -5 \\
 -x + 2y &= -8
 \end{align*}
 \]
 (a) $(x, y) = (-2, 3)$
 (b) $(x, y) = (2, -3)$
 (c) $(x, y) = (0, 0)$
 (d) no solution!
Part C: Functions and Their Graphs

1. Plot the points \(P_1 = (2, 3), P_2 = (-2, 3) \) and \(P_3 = (-1, -3) \):

 ![Graph of \(P_1, P_2, \) and \(P_3 \)]

2. Plot the straight line going through the points \(P_1 = (-2, -3) \) and \(P_2 = (1, 4) \).

 ![Graph of straight line through \(P_1 \) and \(P_2 \)]

3. Complete for \(f(x) = 3x - 1 \) the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>...</td>
<td>4</td>
</tr>
</tbody>
</table>

 ![Table completion for \(f(x) = 3x - 1 \)]
4. Which of the following graphs given below does not represent a function?
 (a) \(f(x) \) (b) \(g(x) \) (c) \(h(x) \) (d) \(i(x) \)

5. The slope of the function \(f(x) \) given below is
 (a) 2 (b) \(-\frac{1}{2}\) (c) \(-2\) (d) \(\frac{1}{2}\)

6. The \(x \)-intercept of \(h(x) = -4x + 3 \) is:
 (a) \((x, y) = (0.75, 0)\) (b) \((x, y) = (0, 3)\) (c) \((x, y) = (3, 0)\) (d) \((x, y) = (0, \frac{3}{4})\)

7. The \(y \)-intercept of \(h(x) = -4x + 3 \) is:
 (a) \((x, y) = (0, -3)\) (b) \((x, y) = (3, 0)\) (c) \((x, y) = (0, 3)\) (d) \((x, y) = (0, 0.75)\)

8. The slope of the line defined by the equation \(4x + 2y = 6 \) is:
 (a) 2 (b) \(-2\) (c) 3 (d) \(-3\)
9. Graph the intervals $|x| < 3$ and $|x| \geq 2$.

10. Graph the solution set of the inequality $y + 2x > 1$:
Part D: Word Problems

1. Five times a number is 9 less than twice the same number. What is the number?

 (a) −5 (b) 2 (c) −3 (d) 4

2. For temperatures T, the conversion formula between the temperature scales Celsius $[^\circ\text{C}]$ and Fahrenheit $[^\circ\text{F}]$ is given by:

 $$T[^\circ\text{F}] = \frac{9}{5}T[^\circ\text{C}] + 32.$$

 On June 03, 2012, the highest temperature in Kabul was 30$^\circ\text{C}$. What was then the temperature in Fahrenheit?

 (a) $T = \frac{5}{9}F$ (b) $T = 86^\circ\text{F}$ (c) $T = -32^\circ\text{F}$ (d) $T = -\frac{9}{5}F$

3. Mahmud’s monthly salary has increased after a promotion by 20% to 24,000 Afs. What was his initial monthly salary?

 (a) 30,000 Afs (b) 2,000 Afs (c) 10,000 Afs (d) 20,000 Afs

4. 150 students are registered for a College Algebra course of which 40% are female students. How many male students are taking this course?

 (a) 40 (b) 60 (c) 110 (d) 90

5. Ahmad has x Afs in his pocket. First, he spends $\frac{1}{3}$ for a lunch in a restaurant and, then, he uses up $\frac{3}{4}$ of the remaining amount to buy fruit and vegetables for the family. If he still has 100 Afs left, what was then the initial amount x?

 (a) $x = 600$ Afs (b) $x = 220$ Afs (c) $x = 8000$ Afs (d) $x = 120000$ Afs
Scratch Paper 4